THÉORÈMES DE AONYERGENAE SUR LES SUITES

1/ Théorèmes de comparaison.

	Hypothèse 1	Hypothèse 2	Conclusion
	Inégalité valable à partir d'un	Comportement en $+\infty$	
	certain rang		
	$u_n \le v_n$	$\lim_{n\to+\infty}u_n=+\infty$	$\lim_{n\to+\infty}v_n=+\infty$
	$v_n \le u_n$	$\lim_{n\to+\infty}u_n=-\infty$	$\lim_{n\to+\infty}v_n=-\infty$
	$u_n \le v_n \le w_n$	$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = l$	$\lim_{n\to+\infty}v_n=l$

Démonstration du premier théorème (ROC) : reprendre la démonstration du théorème équivalent sur les fonctions, faire un schéma.

On rappelle la définition : la suite (u_n) admet $+\infty$ pour limite quand n tend vers $+\infty$, si tout intervalle ouvert du type $]A;+\infty[$, avec A aussi grand que l'on veut, contient toutes les valeurs de u_n à partir d'un certain rang N.

2/ Rappel : comportement des suites géométriques.

Lemme: $(1+a)^n \ge 1 + na$ pour a réel positif et n entier naturel

Démo: par récurrence

Théorème : Soit (u_n) une suite géométrique de raison q et de premier terme u_0 positif.

Si q > 1 alors (u_n) diverge vers $+\infty$;

Si q = 1 alors (u_n) est constante et converge vers u_0 ;

Si -1 < q < 1 alors (u_n) converge vers 0;

Si q = -1 alors (u_n) diverge, en alternant entre u_0 et $-u_0$;

Si q < -1 alors (u_n) diverge (en allant alternativement vers $+\infty$ et $-\infty$);

Démonstrations : déjà faites, la 1ère est une ROC

3/ Convergence des suites monotones.

Théorème: Si une suite (u_n) est croissante et admet L pour limite, alors tous les termes de la suite sont inférieurs ou égaux à L.

Démonstration : par l'absurde. Supposons qu'il existe n_0 tel que $u_{n_0} > L$ (le contraire de la conclusion $u_n \le L$). Comme la suite admet L pour limite, l'intervalle $]L-1;u_{n_0}[$, qui est un intervalle ouvert contenant L, doit donc contenir tous les termes de la suite à partir d'un certain rang N.

Mais comme la suite est croissante, tous les termes tels que $n \ge n_0$ vérifient $u_n \ge u_{n_0}$, et donc n'appartiennent pas à $]L-1;u_{n_0}[$. Absurde.

Théorème : toute suite croissante majorée converge. *Remarques* :

- Théorème admis.
- De manière équivalente, toute suite décroissante minorée converge.
- Dans ce paragraphe, seul ce théorème est exigible en théorie. Dans les faits, les autres peuvent être utiles pour certains sujets du bac.

Théorème : une suite croissante non majorée admet +∞ pour limite.

Remarque : de même, une suite décroissante non minorée admet -∞ pour limite.

 $D\acute{e}monstration$: Soit A un réel quelconque, aussi grand que l'on veut. Dire que (u_n) est non majorée, cela signifie que u_n « dépasse » A pour un certain rang N (sinon (u_n) serait majorée par A). Comme de plus (u_n) est croissante, on a $u_n \ge u_N$ pour $n \ge N$. Donc tous les termes de la suite (u_n) sont dans l'intervalle A; $+\infty$ à partir de N, CQFD (faire le schéma).

Remarque:

- pour vous entrainer, vous pouvez prouver le théorème : Toute suite convergente est bornée.
- La démonstration se fait par disjonction des cas :
 - o D'une part l'intervalle [l-1;l+1] contient tous les termes à partir d'un rang N (pourquoi ?)
 - o et les premiers termes sont bornés par leur min et max.
- D'où la contraposée à écrire :